NKOJ 3777 卡牌操作(线段树)

P3777卡牌操作

问题描述

有n张卡片在桌上一字排开,每张卡片上有两个数,第i张卡片上,正面的数为a[i],反面的数为b[i]。现在,有m个熊孩子来破坏你的卡片了!
第i个熊孩子会交换c[i]和d[i]两个位置上的卡片。
每个熊孩子捣乱后,你都需要判断,通过任意翻转卡片(把正面变为反面或把反面变成正面,但不能改变卡片的位置),能否让卡片正面上的数从左到右单调不降。

输入格式

第一行一个n。
接下来n行,每行两个数a[i],b[i]。
接下来一行一个m。
接下来m行,每行两个数c[i],d[i]。

输出格式

m行,每行对应一个答案。如果能成功,输出TAK,否则输出NIE。

样例输入

4
2 5
3 4
6 3
2 7
2
3 4
1 3

样例输出

NIE
TAK

提示

【样例解释】
交换3和4后,卡片序列为(2,5) (3,4) (2,7) (6,3),不能成功。
交换1和3后,卡片序列为(2,7) (3,4) (2,5) (6,3),翻转第3张卡片,卡片的正面为2,3,5,6,可以成功。

n≤200000,m≤1000000,0≤a[i],b[i]≤10000000,1≤c[i],d[i]≤n.


首先用图论的思想,将一个卡牌看成两个点$A_i$和$B_i$,不妨设$A_i<=B_i$,如果$A_i$的值小于$A_{i+1}$,那么就连一条从$A_i$指向$A_{i+1}$的边,同理处理所有点。
那么是否有解的问题就变成了问是否存在一条路径可以从1走到n。

然后用到线段树维护连通性。

我们讨论一个区间$[L,R]$,用Va表示从$A_L$出发能够到达$R$号点时最小的权值,Vb表示从$B_L$出发。
那么我们ls为区间的左儿子,rs为右儿子,那么我们需要考虑是否能通过左右儿子的值来算出$[L,R]$的值。令mid为$L+R>>1$。

首先我们考虑算出$Va_{[L,R]}$
那么如果$Va_{ls}<=A_{mid+1}$,那么意味着从mid点可以连到$A_{mid+1}$,所以$Va_{[L,R]}=Va_{rs}$。
否则讨论$Va_{ls}<=B_{mid+1}$,成立就意味着从mid点可以连到$B_{mid+1}$,所以$Va_{[L,R]}=Vb_{rs}$。
如果都不满足,那么mid不能连到mid+1,意味着不存在一条从$A_L$到$A_R$或$B_R$的路径,那么$Va_{[L,R]}=inf$。

$Vb_{[L,R]}$同理计算。
最后只需要看$Va_{[1,n]}$和$Vb_{[1,n]}$是否存在就行了。

关于修改显然就是单点修改了。具体可以参考代码。


代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
#include<stdio.h>
#include<iostream>
#include<algorithm>
#define N 222222
#define M 2222222
using namespace std;
int n,A[N],B[N],m;
int ls[M],rs[M],va[M],vb[M],tot;
void UD(int p,int l,int r)
{
int mid=(l+r>>1)+1;
if(va[ls[p]]<=A[mid])va[p]=va[rs[p]];
else if(va[ls[p]]<=B[mid])va[p]=vb[rs[p]];
else va[p]=1e9;
if(vb[ls[p]]<=A[mid])vb[p]=va[rs[p]];
else if(vb[ls[p]]<=B[mid])vb[p]=vb[rs[p]];
else vb[p]=1e9;
}
int BT(int x,int y)
{
int p=++tot;
if(x<y)
{
int mid=x+y>>1;
ls[p]=BT(x,mid);
rs[p]=BT(mid+1,y);
UD(p,x,y);
}
else va[p]=A[x],vb[p]=B[x];
return p;
}
void CHA(int p,int l,int r,int k)
{
if(l==r){va[p]=A[l];vb[p]=B[l];return;}
int mid=l+r>>1;
if(k<=mid)CHA(ls[p],l,mid,k);
else CHA(rs[p],mid+1,r,k);
UD(p,l,r);
}
int main()
{
int i,x,y;
scanf("%d",&n);
for(i=1;i<=n;i++)
{
scanf("%d%d",&A[i],&B[i]);
if(A[i]>B[i])swap(A[i],B[i]);
}
BT(1,n);
scanf("%d",&m);
for(i=1;i<=m;i++)
{
scanf("%d%d",&x,&y);
swap(A[x],A[y]);
swap(B[x],B[y]);
CHA(1,1,n,x);
CHA(1,1,n,y);
if(va[1]!=1e9||vb[1]!=1e9)puts("TAK");
else puts("NIE");
}
}